Criteo

Criteo is the advertising platform for the open Internet, delivering effective advertising across all channels, by applying advanced machine learning to unparalleled data sets.

What advertisers really need to know about Deep Learning

  • Colin Barnard, Commercial Director at Criteo, ANZ
View all images

By Colin Barnard, Commercial Director at Criteo, ANZ

Deep Learning is often perceived as the solution to almost all problems in digital advertising. As the youngest child of the AI cosmos, Deep Learning promises to increase relevance, improve prediction and reduce banner blindness.

Deep Learning isn’t a child anymore. Researchers have studied Deep Learning for more than 20 years with significant developments in image recognition and text and sound processing. But how do these new developments relate to digital advertising? Especially considering ads are implemented in real-time and utilise more complex data than standard bare pixels and sound frames.

The Swiss Army knife of digital advertising

You could say Deep Learning is regarded as the Swiss Army knife of digital advertising. The Swiss Army knife is a multi-purpose tool but to solve more complex scenarios, we often need to use a Swiss Army knife in conjunction with other tools or source the help of a handyman. 

This notion can be applied to Deep Learning. Deep Learning may be the most powerful subset of Machine Learning, perfectly suited to solve tasks like image recognition, but for digital advertising where large amounts of quality data and years of experience are required, this all-purpose tool shouldn’t be the only ace up a marketer’s sleeve.

Machine vs Deep Learning?

It’s important to understand how Deep Learning fits into the Machine Learning spectrum:

  • Supervised Machine Learning teaches algorithms to view data and cluster them respectively to make predictions. An everyday example of this is the spam filter in our inbox. In digital advertising, Deep Learning can predict the likeliness of a user clicking on a banner for example. It involves defining the features to generate a label as an output, like “This mail is spam” or “This user has a Click Through Rate of X”.
  • Unsupervised Machine Learning finds patterns in a large pool of data, analysing the calculations’ results to classify consumer behaviour. You don’t have to define a feature or label, instead the machine looks for interpretable clusters of patterns.
  • Deep Learning is a subset of Machine Learning. Based on artificial neural networks, Deep Learning can be supervised, semi-supervised or unsupervised using high-speed machines that have computed, analysed and stored huge amounts of data in the past. But there’s a catch.

Should advertisers use Deep Learning? The answer is just a little.  

Mastering Machine Learning

The challenge with Deep Learning is that it requires an enormous amount of data to train such a complex system and for advertisers this means processing the data in real-time.

Advertising is driven by programmatic-buying technologies under stricter latency constraints than other Deep Learning practices (single-digit milliseconds at most), so the processing of this data can only be achieved with a major increase in computer power, but this is only justifiable by massive uplifts that are almost impossible to achieve.

You’ll notice that Deep Learning is rarely used in bidding stages and instead for precomputing features outside the critical path. A lot of advertisers don’t realise that these features can be fed into a much simpler, traditional Machine Learning model or a logistic regression model with higher speeds to generate a better result.

A logistic regression model is a single layer model that processes features that are usually hand-crafted and is often used as the last layer of a Deep Learning model. If you have a good feature list and enough data, logistic regression provides a faster solution with less power than Deep Learning.

New technologies are often labelled as revolutionising the advertising industry but what advertisers must do is distinguish between potential game changers and marketing jargon. It’s important for advertisers to not buy into the hype of Machine Learning verses Deep Learning or rely on one single tool but rather determine whether the technology contributes to their objectives.

Deep Learning is becoming central to marketing strategies but only in the wider context of Machine Learning, including tree-based and regression models and self-organising AI networks. For the best impact, advertisers must take a scientific approach to experimenting on their data and KPIs while using an optimum combination of Machine Learning tools including Deep Learning. Advertising platforms like Criteo can help guide advertisers through this process to create highly personalised customer experiences. 

For more information on how to utilise Machine Learning tools including Deep Learning, visit www.criteo.com.

Colin Barnard, Commercial Director at Criteo, ANZCredit: Colin Barnard
Colin Barnard, Commercial Director at Criteo, ANZ

Colin Barnard is Criteo’s Commercial Director ANZ. Colin is a proven business leader with over 16 years of experience in digital marketing. Prior to Criteo, Colin was Head of Retail and Google Shopping ANZ at Google. He has experience in both the UK and AU/NZ markets, and is passionate about helping businesses unlock the power of technology to make their marketing targeted, efficient, relevant and accountable.




Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments

Latest Videos

More Videos

Are you sure they wont start a platform that the cheese is white, pretty sure that is racist

Hite

New brand name for Coon Cheese revealed

Read more

Real digital transformation requires reshaping the way the business create value for customers. Achieving this requires that organization...

ravi H

10 lessons Telstra has learnt through its T22 transformation

Read more

thanks

Lillian Juliet

How Winedirect has lifted customer recency, frequency and value with a digital overhaul

Read more

Having an effective Point of Sale system implemented in your retail store can streamline the transactions and data management activities....

Sheetal Kamble

​Jurlique’s move to mobile POS set to enhance customer experience

Read more

I too am regularly surprised at how little care a large swathe of consumers take over the sharing and use of their personal data. As a m...

Catherine Stenson

Have customers really changed? - Marketing edge - CMO Australia

Read more

Blog Posts

Brand storytelling lessons from Singapore’s iconic Fullerton hotel

In early 2020, I had the pleasure of staying at the newly opened Fullerton Hotel in Sydney. It was on this trip I first became aware of the Fullerton’s commitment to brand storytelling.

Gabrielle Dolan

Business storytelling leader

You’re doing it wrong: Emotion doesn’t mean emotional

If you’ve been around advertising long enough, you’ve probably seen (or written) a slide which says: “They won’t remember what you say, they’ll remember how you made them feel.” But it’s wrong. Our understanding of how emotion is used in advertising has been ill informed and poorly applied.

Zac Martin

Senior planner, Ogilvy Melbourne

Why does brand execution often kill creativity?

The launch of a new brand, or indeed a rebrand, is a transformation to be greeted with fanfare. So why is it that once the brand has launched, the brand execution phase can also be the moment at which you kill its creativity?

Rich Curtis

CEO, FutureBrand A/NZ

Sign in