Criteo

Criteo is the advertising platform for the open Internet, delivering effective advertising across all channels, by applying advanced machine learning to unparalleled data sets.

What advertisers really need to know about Deep Learning

  • Colin Barnard, Commercial Director at Criteo, ANZ
View all images

By Colin Barnard, Commercial Director at Criteo, ANZ

Deep Learning is often perceived as the solution to almost all problems in digital advertising. As the youngest child of the AI cosmos, Deep Learning promises to increase relevance, improve prediction and reduce banner blindness.

Deep Learning isn’t a child anymore. Researchers have studied Deep Learning for more than 20 years with significant developments in image recognition and text and sound processing. But how do these new developments relate to digital advertising? Especially considering ads are implemented in real-time and utilise more complex data than standard bare pixels and sound frames.

The Swiss Army knife of digital advertising

You could say Deep Learning is regarded as the Swiss Army knife of digital advertising. The Swiss Army knife is a multi-purpose tool but to solve more complex scenarios, we often need to use a Swiss Army knife in conjunction with other tools or source the help of a handyman. 

This notion can be applied to Deep Learning. Deep Learning may be the most powerful subset of Machine Learning, perfectly suited to solve tasks like image recognition, but for digital advertising where large amounts of quality data and years of experience are required, this all-purpose tool shouldn’t be the only ace up a marketer’s sleeve.

Machine vs Deep Learning?

It’s important to understand how Deep Learning fits into the Machine Learning spectrum:

  • Supervised Machine Learning teaches algorithms to view data and cluster them respectively to make predictions. An everyday example of this is the spam filter in our inbox. In digital advertising, Deep Learning can predict the likeliness of a user clicking on a banner for example. It involves defining the features to generate a label as an output, like “This mail is spam” or “This user has a Click Through Rate of X”.
  • Unsupervised Machine Learning finds patterns in a large pool of data, analysing the calculations’ results to classify consumer behaviour. You don’t have to define a feature or label, instead the machine looks for interpretable clusters of patterns.
  • Deep Learning is a subset of Machine Learning. Based on artificial neural networks, Deep Learning can be supervised, semi-supervised or unsupervised using high-speed machines that have computed, analysed and stored huge amounts of data in the past. But there’s a catch.

Should advertisers use Deep Learning? The answer is just a little.  

Mastering Machine Learning

The challenge with Deep Learning is that it requires an enormous amount of data to train such a complex system and for advertisers this means processing the data in real-time.

Advertising is driven by programmatic-buying technologies under stricter latency constraints than other Deep Learning practices (single-digit milliseconds at most), so the processing of this data can only be achieved with a major increase in computer power, but this is only justifiable by massive uplifts that are almost impossible to achieve.

You’ll notice that Deep Learning is rarely used in bidding stages and instead for precomputing features outside the critical path. A lot of advertisers don’t realise that these features can be fed into a much simpler, traditional Machine Learning model or a logistic regression model with higher speeds to generate a better result.

A logistic regression model is a single layer model that processes features that are usually hand-crafted and is often used as the last layer of a Deep Learning model. If you have a good feature list and enough data, logistic regression provides a faster solution with less power than Deep Learning.

New technologies are often labelled as revolutionising the advertising industry but what advertisers must do is distinguish between potential game changers and marketing jargon. It’s important for advertisers to not buy into the hype of Machine Learning verses Deep Learning or rely on one single tool but rather determine whether the technology contributes to their objectives.

Deep Learning is becoming central to marketing strategies but only in the wider context of Machine Learning, including tree-based and regression models and self-organising AI networks. For the best impact, advertisers must take a scientific approach to experimenting on their data and KPIs while using an optimum combination of Machine Learning tools including Deep Learning. Advertising platforms like Criteo can help guide advertisers through this process to create highly personalised customer experiences. 

For more information on how to utilise Machine Learning tools including Deep Learning, visit www.criteo.com.

Colin Barnard, Commercial Director at Criteo, ANZCredit: Colin Barnard
Colin Barnard, Commercial Director at Criteo, ANZ

Colin Barnard is Criteo’s Commercial Director ANZ. Colin is a proven business leader with over 16 years of experience in digital marketing. Prior to Criteo, Colin was Head of Retail and Google Shopping ANZ at Google. He has experience in both the UK and AU/NZ markets, and is passionate about helping businesses unlock the power of technology to make their marketing targeted, efficient, relevant and accountable.




Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments

Latest Videos

More Videos

Google collects as much data as it can about you. It would be foolish to believe Google cares about your privacy. I did cut off Google fr...

Phil Davis

ACCC launches fresh legal challenge against Google's consumer data practices for advertising

Read more

“This new logo has been noticed and it replaces a logo no one really knew existed so I’d say it’s abided by the ‘rule’ of brand equity - ...

Lawrence

Brand Australia misses the mark

Read more

IMHO a logo that needs to be explained really doesn't achieve it's purpose.I admit coming to the debate a little late, but has anyone els...

JV_at_lAttitude_in_Cairns

Brand Australia misses the mark

Read more

Hi everyone! Hope you are doing well. I just came across your website and I have to say that your work is really appreciative. Your conte...

Rochie Grey

Will 3D printing be good for retail?

Read more

Very insightful. Executive leaders can let middle managers decide on the best course of action for the business and once these plans are ...

Abi TCA

CMOs: Let middle managers lead radical innovation

Read more

Blog Posts

The obvious reason Covidsafe failed to get majority takeup

Online identity is a hot topic as more consumers are waking up to how their data is being used. So what does the marketing industry need to do to avoid a complete loss of public trust, in instances such as the COVID-19 tracing app?

Dan Richardson

Head of data, Verizon Media

Brand or product placement?

CMOs are looking to ensure investment decisions in marketing initiatives are good value for money. Yet they are frustrated in understanding the value of product placements within this mix for a very simple reason: Product placements are broadly defined and as a result, mean very different things to different people.

Michael Neale and Dr David Corkindale

University of Adelaide Business School and University of South Australia

Why CMOs need a clear voice strategy to connect with their customers

Now more than ever, voice presents a clear opportunity to add value to an organisation in many ways. Where operational efficiencies are scrutinised, budgets are tighter and discretionary consumer spend at a low, engaging with an audience is difficult.

Guy Munro

Head of innovation and technology, Paper + Spark

Sign in