Data Scientists Frustrated by Data Variety, Find Hadoop Limiting

A survey of data scientists finds that a majority of them believe their work has grown more difficult.

Companies are focusing more and more attention on building out big data analytics capabilities and data scientists are feeling the pressure.

In a study of more than 100 data scientists released this week, Paradigm4, creator of open source computational database management system SciDB, found that 71 percent of data scientists believe their jobs have grown more difficult as a result of a multiplying variety of data sources, not just data volume.

Notably, only 48 percent of respondents said they had used Hadoop or Spark for their work and 76 percent felt Hadoop is too slow, takes too much effort to program or has other limitations.

"The increasing variety of data sources is forcing data scientists into shortcuts that leave data and money on the table," says Marilyn Matz, CEO of Paradigm4. "The focus on the volume of data hides the real challenge of analytics today. Only by addressing the challenge of utilizing diverse types of data will we be able to unlock the enormous potential of analytics."

Even with the challenges surrounding the Hadoop platform, something has to give. About half of the survey respondents (49 percent) said they're finding it difficult to fit their data into relational database tables. Fifty-nine percent of respondents said their organizations are already using complex analytics -- math functions like covariance, clustering, machine learning, principal components analysis and graph operations, as opposed to 'basic analytics' like business intelligence reporting -- to analyze their data.

Another 15 percent plan to begin using complex analytics in the next year and 16 percent anticipate using complex analytics within the next two years. Only four percent of respondents said their organizations have no plans to use complex analytics.

Paradigm4 believes this means that the "low hanging fruit" of big data has been exploited and data scientists will have to step up their game to extract additional value.

"The move from simple to complex analytics on big data presages an emerging need for analytics that scale beyond single server memory limits and handle sparsity, missing values and mixed sampling frequencies appropriately," Paradigm4 writes in the report. "These complex analytics methods can also provide data scientists with unsupervised and assumption-free approaches, letting all the data speak for itself."

Sometimes Hadoop Isn't Enough

Paradigm4 also believes Hadoop has been unrealistically hyped as a universal, disruptive big data solution, noting that it is not a viable solution for some use cases that require complex analytics. Basic analytics, Paradigm4 says, are "embarrassingly parallel" (sometimes referred to as "data parallel"), while complex analytics are not.

Embarrassingly parallel problems can be separated into multiple independent sub-problems that can run in parallel -- there is little or no dependency between the tasks and thus you do not require access to all the data at once. This is the approach Hadoop MapReduce uses to crunch data. Analytics jobs that are not embarrassingly parallel, like many complex analytics problems, require using and sharing all the data at once and communicating intermediate results among processes.

Twenty-two percent of the data scientists surveyed said Hadoop and Spark were not well-suited to their analytics. Paradigm4 also found that 35 percent of data scientists who tried Hadoop or Spark have stopped using it.

Paradigm4's survey of 111 U.S. data scientists was fielded by independent research firm Innovation Enterprise from March 27 to April 23, 2014. Paradigm4 put together this infographic of its survey results.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments
cmo-xs-promo

Latest Videos

More Videos

Focus on your customer experience not your NPS score. Fix the fucking problems and the customer support requests will go away.I currently...

Chris B

Bringing community thinking to Optus' customer service team

Read more

Nice blog!Blog is really informative , valuable.keep updating us with such amazing blogs.influencer agency in Melbourne

Rajat Kumar

Why flipping Status Quo Bias is the key to B2B marketing success

Read more

good this information are very helpful for millions of peoples customer loyalty Consultant is an important part of every business.

Tom Devid

Report: 4 ways to generate customer loyalty

Read more

Great post, thanks for sharing such a informative content.

CodeWare Limited

APAC software company brings on first VP of growth

Read more

This article highlights Gartner’s latest digital experience platforms report and how they are influencing content operations ecosystems. ...

vikram Roy

Gartner 2022 Digital Experience Platforms reveals leading vendor players

Read more

Blog Posts

From unconscious to reflective: What level of data user are you?

Using data is a hot topic right now. Leaders are realising data can no longer just be the responsibility of dedicated analysts or staff with ‘data’ in their title or role description.

Dr Selena Fisk

Data expert, author

Whose responsibility is it to set the ground rules for agency collaboration?

It’s not that your agencies don’t have your best interests at heart – most of them do. But the only way to ensure they’re 100 per cent focused on your business and not growing theirs by scope creep is by setting the guard rails for healthy agency collaboration.

Andrew Pascoe

Head of planning, Hatched

AI Ethics Part 2: Mitigating bias in our algorithms

In first part of this article series, we explored the various forms of AI bias, ways to understand and identify them. This second part will cover various tangible measures that can be undertaken to control, mitigate or remove these biases.

Kshira Saagar

Chief data officer, Latitude Financial Services

Sign in