The Care and Feeding of Data Scientists

CIOs must encourage data scientists to solve real business problems, not just play with data.

As more organizations hire data scientists--especially for predictive analytics projects--IT leaders are discovering that managing people who can turn data into ideas for business actions takes a deft touch. The sharp analytical skills key to the role can sometimes get in the way of answering big-picture corporate questions.

"I'm coaching them to make sure they're aligned with the company, but I'm not prescribing methodology," says Anne Robinson, director of supply chain strategy and analytics at Verizon Wireless. "Because if you want a high return on your analytical investment, allow them the freedom to explore."

Robinson, who is also president of the Institute for Operations Research and the Management Sciences, a professional association, says good teams incorporate a mix of academic skills and applied experiences. Personal characteristics, such as the ability to make connections and express ideas well, are important in the corporate setting, managers say.

And it's increasingly important for CIOs to be able manage analytics teams well--an Accenture study last year found that analytics is "moving from a secondary role in business to the core of many key decisions and processes." For example, analytics may be used to predict customer behavior or prescribe changes that make the supply chain more efficient.

Working in the Real World

Managers should guide their data scientists to interpret data, not just crunch it, says Betsy Page Sigman, a professor at Georgetown University. "Some data scientists are so fascinated by data they lose the forest for the trees," she says. Focus them on bigger corporate goals so they can make predictions in a business context.

Andrew Jennings, chief analytics officer at FICO, a $676 million financial services and credit score company, says statistical skills are hardly enough. He wants people who can both program and see how analytics can be used to shape business strategy. "It's absolutely critical to understand the problem you're trying to solve," he says.

For example, if his team is working on a predictive analytics problem such as improving fraud detection at the point of sale, it needs to analyze the data and factor in real-world business conditions, such as the need for speed and no false positives in the final product.

Finding all those skills in one person is tough, so Jennings looks at the team as a whole. Team members fill roles that use their strengths: a data scientist with communication skills, for instance, will work with business folks.

Other traits are also important. Lon O'Donnell, manager of professional services at International Game Technology, tries to foster inquisitiveness in the data scientists at the $2.2 billion gaming systems company.

"I need someone who makes sense of the data instead of just aggregating it," O'Donnell says. He wants people willing to learn the gaming industry.

In turn, to keep high-performers happy, he stockpiles less urgent projects to provide challenges during slow work times. "You have to always engage their minds," O'Donnell says.

Read more about big data in CIO's Big Data Drilldown.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments

Blog Posts

3 marketing mistakes to overcome when courting prospective customers

Marketing that urges respondents to ‘buy now’ is a little like asking someone to marry you on your first date. At any time, only 3 per cent of the market is looking for what you’re selling, so the chances of your date randomly being ‘The One’ is pretty slim.

Sabri Suby

Founder, King Kong

Why are we dubious about deep learning?

The prospect of deep learning gives those of us in the industry something to get really excited about, and something to be nervous about, at the same time.

Katja Forbes

Founder and chief, sfyte

Why you can’t afford to fail at CX in 2019

In 1976 Apple launched. The business would go on to change the game, setting the bar for customer experience (CX). Seamless customer experience and intuitive designs gave customers exactly what they wanted, making other service experiences pale in comparison.

Damian Kernahan

Founder and CEO, Proto Partners

Red Agency YouGov Galaxy Report, February 2019 Predictors Study. https://redagency.com.au/re...

Vanessa Skye Mitchell

DNA-based marketing: The next big thing?

Read more

RIP holden

Max Polding

Marketing professor: For Holden, brand nostalgia ain’t what it used to be

Read more

Where does the claim that 2 million Australians have tested come from ? Anecdotal information suggests that this is way off the mark.

David Andersen

DNA-based marketing: The next big thing?

Read more

Thank you for the info , being part of a digital marketing agency in kerala , this proved handy and get to know with upcoming trends. htt...

Dotz Web Technologies

Predictions: 9 digital marketing trends for 2019

Read more

So who then is correct? The Research or The skilled Digital people.

Anene

Report reveals Australia faces digital skills shortage

Read more

Latest Podcast

More podcasts

Sign in