The Care and Feeding of Data Scientists

CIOs must encourage data scientists to solve real business problems, not just play with data.

As more organizations hire data scientists--especially for predictive analytics projects--IT leaders are discovering that managing people who can turn data into ideas for business actions takes a deft touch. The sharp analytical skills key to the role can sometimes get in the way of answering big-picture corporate questions.

"I'm coaching them to make sure they're aligned with the company, but I'm not prescribing methodology," says Anne Robinson, director of supply chain strategy and analytics at Verizon Wireless. "Because if you want a high return on your analytical investment, allow them the freedom to explore."

Robinson, who is also president of the Institute for Operations Research and the Management Sciences, a professional association, says good teams incorporate a mix of academic skills and applied experiences. Personal characteristics, such as the ability to make connections and express ideas well, are important in the corporate setting, managers say.

And it's increasingly important for CIOs to be able manage analytics teams well--an Accenture study last year found that analytics is "moving from a secondary role in business to the core of many key decisions and processes." For example, analytics may be used to predict customer behavior or prescribe changes that make the supply chain more efficient.

Working in the Real World

Managers should guide their data scientists to interpret data, not just crunch it, says Betsy Page Sigman, a professor at Georgetown University. "Some data scientists are so fascinated by data they lose the forest for the trees," she says. Focus them on bigger corporate goals so they can make predictions in a business context.

Andrew Jennings, chief analytics officer at FICO, a $676 million financial services and credit score company, says statistical skills are hardly enough. He wants people who can both program and see how analytics can be used to shape business strategy. "It's absolutely critical to understand the problem you're trying to solve," he says.

For example, if his team is working on a predictive analytics problem such as improving fraud detection at the point of sale, it needs to analyze the data and factor in real-world business conditions, such as the need for speed and no false positives in the final product.

Finding all those skills in one person is tough, so Jennings looks at the team as a whole. Team members fill roles that use their strengths: a data scientist with communication skills, for instance, will work with business folks.

Other traits are also important. Lon O'Donnell, manager of professional services at International Game Technology, tries to foster inquisitiveness in the data scientists at the $2.2 billion gaming systems company.

"I need someone who makes sense of the data instead of just aggregating it," O'Donnell says. He wants people willing to learn the gaming industry.

In turn, to keep high-performers happy, he stockpiles less urgent projects to provide challenges during slow work times. "You have to always engage their minds," O'Donnell says.

Read more about big data in CIO's Big Data Drilldown.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments

Latest Videos

More Videos

Great piece Katja. It will be fascinating to see how the shift in people's perception of value will affect design, products and services ...

Paul Scott

How to design for a speculative future - Customer Design - CMO Australia

Read more

Google collects as much data as it can about you. It would be foolish to believe Google cares about your privacy. I did cut off Google fr...

Phil Davis

ACCC launches fresh legal challenge against Google's consumer data practices for advertising

Read more

“This new logo has been noticed and it replaces a logo no one really knew existed so I’d say it’s abided by the ‘rule’ of brand equity - ...

Lawrence

Brand Australia misses the mark

Read more

IMHO a logo that needs to be explained really doesn't achieve it's purpose.I admit coming to the debate a little late, but has anyone els...

JV_at_lAttitude_in_Cairns

Brand Australia misses the mark

Read more

Hi everyone! Hope you are doing well. I just came across your website and I have to say that your work is really appreciative. Your conte...

Rochie Grey

Will 3D printing be good for retail?

Read more

Blog Posts

How to design for a speculative future

For a while now, I have been following a fabulous design strategy and research colleague, Tatiana Toutikian, a speculative designer. This is someone specialising in calling out near future phenomena, what the various aspects of our future will be, and how the design we create will support it.

Katja Forbes

Managing director of Designit, Australia and New Zealand

The obvious reason Covidsafe failed to get majority takeup

Online identity is a hot topic as more consumers are waking up to how their data is being used. So what does the marketing industry need to do to avoid a complete loss of public trust, in instances such as the COVID-19 tracing app?

Dan Richardson

Head of data, Verizon Media

Brand or product placement?

CMOs are looking to ensure investment decisions in marketing initiatives are good value for money. Yet they are frustrated in understanding the value of product placements within this mix for a very simple reason: Product placements are broadly defined and as a result, mean very different things to different people.

Michael Neale and Dr David Corkindale

University of Adelaide Business School and University of South Australia

Sign in