6 Practical Predictive Analytics Tools

Experts have, ahem, predicted the rise of predictive analytics for years. The concept sounds simple: Analyse existing data stores to make a variety of predictions, such as where you might need more storage or how to keep customers at your ecommerce site and increase revenue.

Many tools promise to make predictions but, in reality, tend to do more of a historical analysis of data. The following six tools have a tighter focus: They use predictive technology in a tangible, practical way and, compared to other analytics tools, possess a "wow" factor that puts them over the edge.

SalesPRISM: Generate Leads From Customer Data

Why It's Innovative: Predicts potential sales leads based on data you already have.

Sometimes, the data you've already collected about customers is a treasure trove that can help you find new customers. That's the idea behind SalesPRISM, a customer pattern-recognition tool from Lattice.

To predict potential sales leads, SalesPRISM looks at many factors such as CRM data, site traffic and sales history along with external data that analyses LinkedIn activity and even LexisNexis reports. This big data analysis generates leads for the sales team, along with specific guidance on how to approach customers based on past success.

Tips: Big Data Analytics a Big Benefit for Marketing Departments

Terracotta In-Genius: Work Faster, Not Harder

Why It's Innovative: Speeds up data analysis by moving it into RAM.

Predicting data processing needs in IT often requires a massive speed boost. Terracotta In-Genius is an analytics tool that relies on Terracotta's BigMemory 4.0 platform, which moves data for high-transaction applications out of slower data storage drives and into a stream of distributed RAM. ( Software AG acquired Terracotta in 2011.) For a bank trying to stop credit card fraud, for example, In-Genius can spot patterns of activity within milliseconds and predict attacks.

News: Software AG Goes All Out for In-Memory Data Processing

Medalogix: Healthcare Risk Assessment

Why It's Innovative: Reveals future costs for long-term healthcare needs

For a large healthcare organisation, determining the risk of readmitting a patient (and knowing how long that patient will be in hospital care) is a difficult task. Medalogix aims to make this easier by examining patient records and also analysing past treatment history at specific healthcare facilities. The result is a risk assessment for health professionals: Knowing how many patients will be returning for care after surgery, or knowing which will require longer stays.

Related: 6 Big Data Analytics Use Cases for Healthcare IT

The Lorenzi Group: Get Real-Time Results

Why It's Innovative: Drills down into data at the mobile device level.

Many big data systems can examine large data repositories and predict storage faults or anomalies and security risks, but device-specific predictive analytics remains an elusive challenge. ROAR, the Real-time Operations Analytical Results tool from The Lorenzi Group, searches specific tablets, smartphones, desktop computers and other devices for unauthorised access. The tool can see when a user is not following IT practices, such as using USB drives to copy data. It can also predict the risk for the organisation, as well as the employee productivity problems that will result from such behaviour.

Medio Platform: Prevent Customers From Leaving

Why It's Innovative: Dives deep into site visitor behavior to predict problems.

Google Analytics is a well-known tool for seeing how visitors use a company website or ecommerce portal. Medio Platform can help predict problems with customers. (The company went so far as to coin the term clustomer as a way to understand customer segments or clusters.)

The idea is to elicit corrective action. Users can determine why a customer is leaving a site suddenly, or why one segment stays in a certain section of a site more than others, and then create an approach that leads to more sales through a company site-through a better promotion, for example.

Tips: How to Use Big Data to Stop Customer Churn

SAS Text Miner: Sift Through Large Documents

Why It's Innovative: Looks for trends in a vast text archive to predict issues.

Understanding a large document store can require long hours of analysis. SAS Text Miner examines documents and categorizes terms, weeds out misspellings and lists terms that deserve more focus and attention. For example, for a large company dealing with complaints about a product, Text Miner can analyse the complaints and determine trends that can help with future product development. This can help determine how to approach new customers, predict future complaints and know which support issues might be on the horizon.

Analysis: Big Data Analytics Gold for the Call Center

John Brandon is a former IT manager at a Fortune 100 company who now writes about technology. He has written more than 2,500 articles in the past 10 years. You can follow him on Twitter @jmbrandonbb. Follow everything from CIO.com on Twitter @CIOonline, Facebook, Google + and LinkedIn.

Read more about data management in CIO's Data Management Drilldown.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Show Comments

Blog Posts

3 marketing mistakes to overcome when courting prospective customers

Marketing that urges respondents to ‘buy now’ is a little like asking someone to marry you on your first date. At any time, only 3 per cent of the market is looking for what you’re selling, so the chances of your date randomly being ‘The One’ is pretty slim.

Sabri Suby

Founder, King Kong

Why are we dubious about deep learning?

The prospect of deep learning gives those of us in the industry something to get really excited about, and something to be nervous about, at the same time.

Katja Forbes

Founder and chief, sfyte

Why you can’t afford to fail at CX in 2019

In 1976 Apple launched. The business would go on to change the game, setting the bar for customer experience (CX). Seamless customer experience and intuitive designs gave customers exactly what they wanted, making other service experiences pale in comparison.

Damian Kernahan

Founder and CEO, Proto Partners

RIP holden

Max Polding

Marketing professor: For Holden, brand nostalgia ain’t what it used to be

Read more

Where does the claim that 2 million Australians have tested come from ? Anecdotal information suggests that this is way off the mark.

David Andersen

DNA-based marketing: The next big thing?

Read more

Thank you for the info , being part of a digital marketing agency in kerala , this proved handy and get to know with upcoming trends. htt...

Dotz Web Technologies

Predictions: 9 digital marketing trends for 2019

Read more

So who then is correct? The Research or The skilled Digital people.

Anene

Report reveals Australia faces digital skills shortage

Read more

The blogs are really appreciable and one can trust the knowledge and information provided in the writing.The article you do produce on a ...

Prince Arora

5 brand strategy lessons from Gelato Messina

Read more

Latest Podcast

More podcasts

Sign in