Why predictive analytics success comes down to trust

New research into the drivers and use of predictive analytics across organisations finds marketing and sales are leading adoption of the analytics technology, but that it requires a whole-of-company culture change

Organisations looking to make the most of predictive analytics must recognise that it takes time to build trust, and that success requires the involvement of the entire company towards a data-driven culture.

The advice from TWDI research director for advanced analytics, Fern Halper, stemmed from the research firm’s new study into the benefits and use of predictive analytics. Its Predictive Analytics for Business Advantage report delves into how predictive analytics is being used to date, the types of technology investments that need to be made, and drivers now and to 2016.

The research made clear predictive analytics is gaining ground as the natural succession to business intelligence (BI). Its new-found accessibility is thanks to cheaper and faster compute power, better insight into the value of proactive customer insights, economic considerations, big data, and ease of use.

“Predictive analytics has finally found its groove and there is a lot to say about the value it provides,” Halper said during a webinar to discuss the results. The list of drivers for predictive analytics adoption is led by understanding market trends and behaviours, followed by understanding customers and predicting their behaviour.

Business process was another reason cited by respondents, and TDWI cited several organisations using predictive analytics to drive better business performance, strategic decisions, and operational efficiency.

Marketing and sales led the charge in terms of adoption by user group, with top use cases being direct marketing, cross-sell and up-sell, and retention analysis. Seventy-two per cent of those surveyed said they plan to use predictive analytics for retention analysis over the next three years.

While most of the work done today is on structured data, TWDI also saw unstructured forms such as text data rising in importance in the next few years.

Why predictive analytics matters
How predictive analytics is helping AMEX tackle customer attrition
Big data, budgets and building predictive analytics

Yet despite the hype, there remains a significant knowledge and skills gap around predictive analytics’ role, timeframes, skills required and where to start.

“Part of building out a predictive analytics business is cultivating relationships and building trust, because sometimes professions are suspicious of new forms of analysis,” Halper commented. “It’s important to involve business and other parts of the organisation. Collaboration between business users and IT, as well as other business groups, is key.”

To do this, Halper advised starting with proof of concept projects with a business sponsor that demonstrate value for the business, and get the ball rolling.

“Success breeds success. A lot of organisations start with BI, get their organisation analytically aware, they start to see results they can use, and then that drives value,” she said.

Organisations also need to work in steps. “Business sometimes gets frustrated it’s not part of the change, so it’s important everyone gets involved, but that you also take it one step at a time.”

One of the biggest mistakes organisations make as they move into predictive analytics is not coming up with a business problem worth solving, even during proof of concept stage. “Even with big data, you can go in and explore, but you still need to at least be thinking about the area you are interested in,” Halper said. “This is about value.”

Another part of the process is determining the cost benefits of the models you want to build and deploy, and the skills available to you to execute the plans, Halper said.

“Enterprises are organising around predictive analytics in different ways,” she stated in the report. “Some are building out dedicated analysis teams. Others are building cross-functional centres of excellence and may have teams within the centres that serve different business areas. Information and best practices are shared across the entire team.

“It is a rare company that can assemble a group of rock-star statisticians to build and deploy predictive models. Even where that is possible, predictive analytics is not simply about building a model. Remember, different people across your organisation will have to get involved, especially if you plan to operationalise the model.”

As with most types of data-driven analysis, Halper also recommended adopting a good model management approach that can scale, as well as investigating different types of data, including unstructured, to utilise. Data integration, governance and a solid BI infrastructure are also important.

TWDI’s research incorporated 373 respondents, 34 per cent of which are actively using predictive analytics in their business today. Fifty-two per cent are investigating the technology, including 20 per cent engaged in predictive activity. Two-thirds of those surveyed were business sponsors or users.

Follow CMO on Twitter: @CMOAustralia, take part in the CMO Australia conversation on LinkedIn: CMO Australia, or join us on Facebook: https://www.facebook.com/CMOAustralia

Signup to CMO’s new email newsletter to receive your weekly dose of targeted content for the modern marketing chief.

Join the CMO newsletter!

Error: Please check your email address.
Show Comments

Supporting Association

Blog Posts

The impact of uniforms on consumer brand preferences

Flight attendant uniforms attract attention. From a primary association with sex appeal during the 1960-70s, to the diverse role they perform today, the flight attendant’s uniform sits front and centre in the advertising imagery of many airlines. However, relatively little is known about the ways in which consumer behaviour is influenced by airline uniforms.

Are data and creativity like chalk and cheese?

The industry is experiencing an explosion in data-led initiatives like programmatic buying, as well as a simultaneous increase in the importance of creativity. A less adventurous marketer might see these trends as chalk and cheese, as two developments which have the power to markedly improve a brand’s bottom line, but which don’t have much room for crossover.

Ashley Madison is a wake-up call for all marketers on data retention

The recent Ashley Madison hack is a wake-up call not only for consumers, but also for marketers and companies – many of which still do not take their customers’ privacy or data security seriously enough.

When you want to get the most ROI, researching about the tools you need will pay off big time. Take for example your marketing and repor...

TapAnalytics

​How to get the best ROI from your martech investment

Read more

We can see how companies are now developing and improving the digital marketing platform they are using and finding ways to add more feat...

TapAnalytics

CMO's top 10 martech stories for the week - 21 January

Read more

Very nice article, Thanks for sharing this necessary information about digital trends. Specially i like prediction no 3 " Marketers embra...

kevin marshall

Predictions: 16 digital marketing trends for 2016

Read more

Mobile has indeed becoming a big player in the marketing industry. It should be utilized by businesses and mobile campaigns should be pro...

TapAnalytics

Report: Mobile-based campaigns and coupons boost consumer brand sentiment

Read more

Very good points, thanks for this article :) I would also add Virtual Reality to the game changers in 2016 (especially after CES2016). I...

Piotr Maksymowicz

Predictions: 16 digital marketing trends for 2016

Read more

Latest Podcast

More podcasts

Sign in